An Assembly Language Programming Style Guide

by Ken Lambert

The purpose of these style guidelines is to help the assembly language programmer to
write readable, well-documented, maintainable programs.

In a high-level programming language like Python, many short, complete programs can be
written almost as quickly as the programmer can type. That is obviously not the case with
assembly language. The assembly language programmer often must painstakingly
translate a high-level program design by hand to low-level assembly language code. During
this process, any signs of a high-level design in the resulting code may easily disappear,
assuming they were even present to begin with, leaving a mangled disarray of code.

In Python programming, the use of consistent formatting, conventional naming schemes,
and appropriate documentation are essential elements of programming style. These
elements are even more critical in an assembly language program. A significant program
might be read months, if not years, after it is written, and the reader likely will not be its
original author. Good program style can dramatically cut the amount of time it takes for a
reader to understand code, and can significantly enhance the reading experience.

While you cannot ever make an assembly language program look just like a well-written
Python program, your aim should be to make your readers, including yourself, feel almost
as much at home in an assembly language program as they would in a Python program.

Naming Conventions

Unlike Python code, assembly language code is not case sensitive. But you should spell all
opcodes, register symbols, labels, and assembler directives using UPPERCASE letters. This
usage will help the reader pick out the actual program code from the surrounding
comments, which should use sentence case. The only exception to the uppercase rule for
symbols is the conditional branch (BR), which uses lowercase to indicate positive, negative,
zero, or any combination (BRzp).

The names of data labels should reflect their purpose and role in the program. This is also
the case for the names of instruction labels. For example, SIZE is a good name for the
number of data values currently stored in an array, whereas GCD is a good name for a
subroutine that computes the greatest common divisor. WHILE and ENDWHILE are good
names for labels for the beginning and end of awhile loop (but only if there is at most one
such loop in your program!).

Use of Whitespace

Each instruction should appear on a single line. The component parts of each instruction
should be in columns aligned with the same components of the instructions above and
below it. In general, labels should appear in the first column, opcodes or assembler



directives in the second column, operands in the third column, and end-of-line comments
in the fourth column. At least one tab should separate two columns. Multiple operands
should include a single space after each comma.

Not every line of code requires an end-of-line comment, but those lines whose meanings
are less than obvious certainly do. We'll see some examples shortly.

Well-placed blank lines between different functional parts of a program can really help the
reader. For example, you should put at least one blank line between the instructions and
the declarations of the data labels on which those instructions operate.

The Structure of Simple Assembly Language Programs

A simple assembly language program, like a simple Python script, consists of a set of
statements and data declarations, but no subroutine definitions. The code itself might
amount to 6-20 lines of text; but you should include other text, in the form of program
comments, to describe its purpose and clarify any maneuvers or tactics that might seem
obscure. To aid in establishing such a program format, here is a template to follow for
structuring short, simple programs:

<prefatory comment>
<pseudocode design>
<comment on register usage>
<program instructions>

<program data declarations>

Now here is a short program that is structured according to this template, followed by a
discussion of each of the structural pieces:



;; Author: Ken Lambert

; This program resets the value of the variable NUMBER
; to its absolute value

7

7
.ORIG x3000

;7 Pseudocode design:

if number < 0
number = -number

~e ~o

; Main program register usage:
R1 = number

; Main program code
LD R1, NUMBER

ADD R1l, R1, #O0 ; if number < 0
BRzp ENDIF
NOT R1, R1 g number = -number

ADD R1, R1, #1
ST R1, NUMBER
ENDIF HALT

; Data for the main program
NUMBER .BLKW 1

.END

Prefatory Comment

The prefatory comment should always include the author’s name. For a homework project,
this comment should include the exercise number as well. The comment should also
include a brief statement of what the program does.

Pseudocode Design

Each major component of a program should begin with a comment containing its
pseudocode design. Pseudocode is a language for describing algorithms that looks a lot like
Python. Note that even this simple example program has a pseudocode design.

Register Usage

Following the pseudocode design, each major component of a program should have a
comment that lists the usage of the registers in that component. This comment answers
such questions as what values will the registers hold, and what roles in that program
component will they serve? Remember that registers are like temporary variables in a
Python function, but the reader needs a “key” to interpret them properly.



Using Whitespace Wisely

Note the use of blank lines, columns of whitespace, and comments to mark the major
components of the example program. You would not need this in a Python program
(except for the syntactically significant indentations), but it’s imperative here.

The Structure of Complex Assembly Language Programs

A complex assembly language program, like a complex Python script, consists of a set of
main program statements and data declarations and one or more subroutine definitions
used by the main program or other subroutines.

The program format of a complex assembly language program is just an extension of the
format of a simple program discussed earlier. The format of the main program instructions
is exactly as it was before, but now each subroutine is listed below the data for the main
program and appears in a somewhat similar format.

Here is the template for the structure of a program with subroutines:
<prefatory comment>

<pseudocode design of main program code>

<comment on register usage by main program code>
<main program instructions>

<main program data declaration>

<comments, instructions, and data declarations for subroutine-1>

<comments, instructions, and data declarations for subroutine-n>

The next program example revises the earlier example by defining and calling a subroutine
to compute a number’s absolute value.



Author: Ken Lambert

~e
~

; This program resets the value of the variable NUMBER
; to its absolute value, using the ABS subroutine

~e ~o

Pseudocode design:

~e
~

; number = abs(number)
.ORIG x3000

; Main program register usage:
RO = number

; Main program code

LD RO, NUMBER ; Set argument for abs
JSR ABS

ST RO, NUMBER ; Use returned value
HALT

; Data for the main program
NUMBER .BLKW 1

Subroutine ABS

Converts the number in RO to its absolute wvalue
Parameter RO = number to test

Return value RO

~e

TS ~Ne Ne Ne ~o

BS ADD RO, RO, #0 ; if number < 0
BRzp ENDABS
NOT RO, RO g number = - number
ADD RO, RO, #1
ENDABS RET
.END

Note that the subroutine’s comments and code follow the main program'’s code and data.

Subroutine Comments
The prefatory comment of a subroutine should include

* itsname
* abrief statement of what it does
* alist of its parameters and their roles (these will be registers, never data labels)

* alistof its return values (these too will be registers, never data labels)



Subroutines and Data Labels

A subroutine may declare its own data labels, although there are none in the current
example. These data labels are like temporary variables in Python, and are intended for
temporary working storage for that subroutine only. We will see their legitimate use in
later examples.

With very rare exceptions, a subroutine should NEVER use or modify the contents of a data
label declared in the main program or in another subroutine. This is a recipe for bug
infections, maintenance headaches, and subroutines that cannot be ported to other
programs. Like Python functions, assembly language subroutines should operate only on
their own data labels and on registers designated as parameters or as temporary storage.

Using Registers for Parameters and Return Values

As in Python, data should be passed to a subroutine via parameters only, and in assembly
language these should always be registers (unless we’re supporting recursive routines with
a system stack). Likewise, data to be returned from a subroutine should also be in
registers.

Preserving Input-Only Parameters to Subroutines

A simple subroutine of one parameter, like abs shown earlier, uses the same register for
the parameter and the return value. While this is economical and makes some sense for
this subroutine, it does not really mimic the safety and security of the parameter-passing
mechanism of Python functions.

Python functions pass their parameters by value. This means that temporary storage is
allocated for the parameter’s value, so that the caller’s original storage cannot overwritten
by assignment within the function’s code. For example, the function call sqrt (n) in
Python cannot not modify the caller’s variable n, even though the code within the function
can do whatever it pleases with the corresponding parameter name.

It often makes sense to return a value in a different register than the one used for the
parameter. Functions with two or more parameters are a case in point, as is a function of
one parameter in which the returned value is of a different type than the argument.

Generally, it is best to treat the registers/parameters through which a subroutine receives
data from its caller as input-only. This means that when the subroutine returns, the
contents of such registers will appear to the caller to be unchanged. That does not mean
that the subroutine cannot modify these registers; but if it does so, it must first save their
contents in temporary variables. These data must then be restored from the variables to
the registers before the subroutine returns. This discipline is known as callee saves.

Any other registers not designated as parameters or return values must also be backed up
within a subroutine before they are used, and then restored before the routine returns.
Such registers might serve as temporary working storage within the routine, but might also
be holding data used by the routine’s caller for its own purposes.



The next example shows a subroutine named SUM, which returns the sum of the values
between a lower bound and an upper bound, inclusive. Note that the input parameters for
the lower and upper bounds, R1 and R2, are input only, and the output only parameter R3
holds the sum. R2 and R4 serve as working storage within the routine, so their original
contents must be saved and restored. Here is the code for the subroutine:

.ORIG x3000
; + Pseudocode design:
; theSum = sum(lower, upper)
; Main program register usage:
R1 = lower bound

R2 upperbound
R3 sum of numbers in the sequence

~e Neo weo ~o

; Main program code
LD R1, LOWER
LD R2, UPPER

JSR SUM
ST R3, THESUM
HALT

; Data for the main program

LOWER .FILL 1
UPPER .FILL 5
THESUM .BLKW 1

Subroutine SUM
Returns the sum of the numbers between lower and upper bounds
Parameters R1 = lower bound
R2 = upper bound

Return value R3 = the sum of the sequence
Working storage R4 used for comparisons

ST R2, R2SUM ; Back up the registers

ST R4, R4SUM

AND R3, R3, #0
WHILESUM NOT R4, R1
ADD R4, R4, #1
ADD R4, R2, R4
BRn ENDSUM
ADD R3, R3, R2

~e

U e ~o ~o ~o ~e ~o

(=]
=

sum = 0
while upper - lower >= 0

.
14
.
14

sum += upper

~e ~o

ADD R2, R2, #-1 upper -= 1
BRnzp WHILESUM
ENDSUM LD R4, R4SUM ; Restore the registers
LD R2, R2SUM
RET

;; Data for subroutine sum
R2SUM .BLKW 1
R4SUM .BLKW 1



Note that the end-of-line comments take the form of pseudocode, reflecting the
correspondence between the high-level algorithm and the assembly language code that
implements it.

Finally, note the naming scheme for the data and instruction labels in the subroutine. Each
label uses the suffix “sum,” to avoid name conflicts with similar labels in other subroutines.

Passing Arrays as Parameters

Arrays are usually passed to subroutines by using two parameters. One is a register
containing the array’s base address. The other is a register containing the logical size, or
number of data values to be processed.

Aloop pattern might move through the array by incrementing the base register. Before
that ever happens, this register must be backed up. Later, before the routine returns, the
base register must be restored.

To illustrate these points, the next example shows a subroutine named MIN, which returns
the minimum value in an array:

.ORIG x3000
;7 Pseudocode design:
; theMin = min(array, logicalSize)

; Main program register usage:

7

;7 Rl = base address of array

;7 R2 = logical size of array

; R3 = sum of numbers in array

; Main program code
LEA R1l, ARRAY
LD R2, SIZE

JSR MIN
ST R3, THEMIN
HALT

; Data for main program

ARRAY .BLKW 10
SIZE .FILL 5
THEMIN .BLKW 1

; Subroutine MIN
Returns the minimum value in an array
Assumes that the logical size >= 1
Parameters R1 = the base address of the array
R2 = the logical size of the array
Return value R3 = the minimum value in the array
Working storage R4 and R5 used for comparisons

Ne Ne Ne Ne Ne N we



MIN ST R1, RIMIN ; Back up the registers
ST R2, R2MIN
ST R4, R4MIN
ST R5, RS5MIN
LDR R3, R1, #O0

WHILEMIN ADD R2, R2, #-1
BRz ENDMIN
ADD R1, R1, #1
LDR R4, R1, #0
NOT R5, R4
ADD R5, R5, #1
ADD R5, R3, R5
BRnz WHILEMIN

min = array[0]
while logical size > 0

index += 1
temp = array[index]
if min > temp

~e o ~o

ADD R3, R4, #0 g min = temp
BRnzp WHILEMIN
ENDMIN LD R5, RS5MIN ; Restore the registers

LD R4, R4MIN
LD R2, R2MIN
LD R1, RI1MIN
RET

;; Data for subroutine MIN

RIMIN .BLKW 1
R2MIN .BLKW 1
R4MIN .BLKW 1

R5MIN .BLKW 1



