
Fundamentals of
Python:

From First Programs
Through Data Structures

Kenneth A. Lambert
Martin Osborne, Contributing Author

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

FM C6840 43079 10/27/08 9:51 AM Page i

Fundamentals of Python: From First
Programs Through Data Structures
Kenneth A. Lambert

Executive Editor: Marie Lee

Acquisitions Editor: Amy Jollymore

Senior Product Manager: Alyssa Pratt

Development Editor: Ann Shaffer

Editorial Assistant: Julia Leroux-Lindsey

Marketing Manager: Bryant Chrzan

Content Project Manager: Matt Hutchinson

Art Director: Marissa Falco

Compositor: Gex Publishing Services

© 2010 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

ISBN-13: 978-1-4239-0218-8

ISBN-10: 1-4239-0218-1

Course Technology
25 Thomson Place
Boston, Massachusetts 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit course.cengage.com.

Purchase any of our products at your local college store or at our preferred
online store www.ichapters.com.

Some of the product names and company names used in this book have
been used for identification purposes only and may be trademarks or regis-
tered trademarks of their respective manufacturers and sellers.

Any fictional data related to persons or companies or URLs used through-
out this book is intended for instructional purposes only. At the time this
book was printed, any such data was fictional and not belonging to any real
persons or companies.

Course Technology, a part of Cengage Learning, reserves the right to revise this
publication and make changes from time to time in its content without notice.

The programs in this book are for instructional purposes only.
They have been tested with care, but are not guaranteed for any particular
intent beyond educational purposes. The author and the publisher do not
offer any warranties or representations, nor do they accept any liabilities
with respect to the programs.

Printed in Canada
1 2 3 4 5 6 7 12 11 10 09 08

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all
requests online at www.cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

FM C6840 43079 10/27/08 9:51 AM Page ii

PREFACE
Welcome to Fundamentals of Python. This text is intended for a complete, first-
year study of programming and problem-solving. It covers the material taught in
typical Computer Science 1 and Computer Science 2 courses (CS1 and CS2) at
the undergraduate level.

This book covers five major aspects of computing:
1 Programming Basics—Data types, control structures, algorithm devel-

opment, and program design with functions are basic ideas that you need
to master in order to solve problems with computers. This book exam-
ines these core topics in detail and gives you practice employing your
understanding of them to solve a wide range of problems.

2 Object-Oriented Programming (OOP)—Object-Oriented
Programming is the dominant programming paradigm used to develop
large software systems. This book introduces you to the fundamental
principles of OOP and enables you to apply them successfully.

3 Data and Information Processing—Most useful programs rely on data
structures to solve problems. These data structures include strings,
arrays, files, lists, stacks, queues, trees, sets, dictionaries, and graphs. This
book gives you experience using, building, and assessing the performance
of data structures. The general concept of an abstract data type is intro-
duced, as is the difference between abstraction and implementation.
You’ll learn to use complexity analysis to evaluate space/time tradeoffs of
different implementations of ADTs.

4 Software Development Life Cycle—Rather than isolate software
development techniques in one or two chapters, this book deals with
them throughout in the context of numerous case studies. Among other
things, you’ll learn that coding a program is often not the most difficult
or challenging aspect of problem solving and software development.

5 Contemporary Applications of Computing—The best way to learn
about programming and problem solving is to create interesting programs
with real-world applications. In this book, you’ll begin by creating applica-
tions that involve numerical problems and text processing. For example,
you’ll learn the basics of encryption techniques such as those that are used
to make your credit card number and other information secure on the
Internet. But unlike many other introductory texts, this one does not
restrict itself to problems involving numbers and text. Most contemporary
applications involve graphical user interfaces, event-driven programming,
graphics, and network communications. These topics are presented in
optional, standalone chapters.

PREFACE [xxi]

FM C6840 43079 10/27/08 9:51 AM Page xxi

PREFACE[xxii]

Why Python?
Computer technology and applications have become increasingly more sophisti-
cated over the past two decades, and so has the computer science curriculum, espe-
cially at the introductory level. Today’s students learn a bit of programming and
problem–solving, and are then expected to move quickly into topics like software
development, complexity analysis, and data structures that, twenty years ago, were
relegated to advanced courses. In addition, the ascent of object-oriented program-
ming as the dominant paradigm of problem solving has led instructors and text-
book authors to bring powerful, industrial-strength programming languages such as
C++ and Java into the introductory curriculum. As a result, instead of experiencing
the rewards and excitement of solving problems with computers, beginning com-
puter science students often become overwhelmed by the combined tasks of mas-
tering advanced concepts as well as the syntax of a programming language.

This book uses the Python programming language as a way of making the
first year of computer science more manageable and attractive for students and
instructors alike. Python has the following pedagogical benefits:

! Python has simple, conventional syntax. Python statements are very close to
those of pseudocode algorithms, and Python expressions use the conven-
tional notation found in algebra. Thus, students can spend less time learn-
ing the syntax of a programming language and more time learning to solve
interesting problems.

! Python has safe semantics. Any expression or statement whose meaning
violates the definition of the language produces an error message.

! Python scales well. It is very easy for beginners to write simple programs in
Python. Python also includes all of the advanced features of a modern pro-
gramming language, such as support for data structures and object-oriented
software development, for use when they become necessary.

! Python is highly interactive. Expressions and statements can be entered at
an interpreter’s prompts to allow the programmer to try out experimental
code and receive immediate feedback. Longer code segments can then be
composed and saved in script files to be loaded and run as modules or
standalone applications.

! Python is general purpose. In today’s context, this means that the language
includes resources for contemporary applications, including media comput-
ing and networks.

! Python is free and is in widespread use in industry. Students can download
Python to run on a variety of devices. There is a large Python user com-
munity, and expertise in Python programming has great resume value.

FM C6840 43079 10/27/08 9:51 AM Page xxii

To summarize these benefits, Python is a comfortable and flexible vehicle for
expressing ideas about computation, both for beginners and for experts as well. If
students learn these ideas well in the first year, they should have no problems
making a quick transition to other languages needed for courses later in the cur-
riculum. Most importantly, beginning students will spend less time staring at a
computer screen and more time thinking about interesting problems to solve.

Organization of the Book
Chapters 1 through 10 constitute the core of a CS1 course. The approach in these
chapters is easygoing, with each new concept introduced only when it is needed.

Chapter 1 introduces computer science by focusing on two fundamental
ideas, algorithms and information processing. A brief overview of computer hard-
ware and software, followed by an extended discussion of the history of comput-
ing, sets the context for computational problem solving.

Chapters 2 and 3 cover the basics of problem solving and algorithm develop-
ment using the standard control structures of expression evaluation, sequencing,
Boolean logic, selection, and iteration with the basic numeric data types.
Emphasis in these chapters is on problem solving that is both systematic and
experimental, involving algorithm design, testing, and documentation.

Chapters 4 and 5 introduce the use of the strings, text files, lists, and diction-
aries. These data structures are both remarkably easy to manipulate in Python
and support some interesting applications. Chapter 5 also introduces simple func-
tion definitions as a way of organizing algorithmic code.

Chapter 6 explores the technique and benefits of procedural abstraction with
function definitions. Top-down design, stepwise refinement, and recursive design
with functions are examined as means of structuring code to solve complex prob-
lems. Details of namespace organization (parameters, temporary variables, and
module variables) and communication among software components are discussed.
An optional section on functional programming with higher-order functions
shows how to exploit functional design patterns to simplify solutions.

Chapter 7 focuses on the use of existing objects and classes to compose pro-
grams. Special attention is paid to the interface, or set of methods, of a class of
objects and the manner in which objects cooperate to solve problems. This chapter
also introduces two contemporary applications of computing, graphics and image
processing—areas in which object-based programming is particularly useful.

Chapter 8 introduces object-oriented design with class and method defini-
tions. Several examples of simple class definitions from different application
domains are presented. Some of these are then integrated into more realistic

PREFACE [xxiii]

FM C6840 43079 10/27/08 9:51 AM Page xxiii

PREFACE[xxiv]

applications, to show how object-oriented software components can be used to
build complex systems. Emphasis is on designing appropriate interfaces for
classes that exploit inheritance and polymorphism.

Chapters 9 and 10 cover advanced material related to two important areas of
computing: graphical user interfaces and networks. Although these two chapters
are entirely optional, they give students challenging experiences at the end of the
first semester course. Chapter 9 contrasts the event-driven model of GUI pro-
grams with the process-driven model of terminal-based programs. The creation
and layout of GUI components are explored, as well as the decomposition of a
GUI-based program using the model/view/controller pattern. Chapter 10 intro-
duces multithreaded programs and the construction of simple network-based
client/server applications.

Chapters 11-20 cover the topics addressed in a traditional CS2 course. These
topics include specialized abstract data types, with a focus on interfaces, imple-
mentations, and applications. Other important CS2 topics include recursive pro-
cessing of data structures, search and sort algorithms, and the tools used in
software development, such as complexity analysis, unit testing, and graphical
notations (UML) to document designs.

Chapters 11 through 13 explore tools used in software development.
Chapter 11 introduces complexity analysis with big-O notation. Enough material
is presented to enable you to perform simple analyses of the running time and
memory usage of algorithms and data structures, using search and sort algorithms
as examples. Chapter 12 examines tools used in the design and testing of soft-
ware. These include basic UML diagrams, documentation of classes and meth-
ods, and unit testing. Chapter 13 begins with an overview of various categories of
collection ADTs. The chapter then covers the details of processing arrays and lin-
ear linked structures, the concrete data structures used to implement many ADTs.
You learn the underlying models of computer memory that support arrays and
linked structures and the time/space tradeoffs that they entail.

Armed with these tools, you are then ready to consider the different collec-
tion ADTs, which form the subject of Chapters 14-20.

Chapters 14-16 present the linear collections, stacks, queues, and lists. Each
collection is viewed first from the perspective of its users, who are aware only of
an interface and a set of performance characteristics possessed by a chosen imple-
mentation. The use of each collection is illustrated with one or more applica-
tions, and then several implementations are developed and their performance is
analyzed. Emphasis is placed on the inclusion of conventional methods in inter-
faces to allow different types of collections to collaborate in applications. For
example, one such method creates an iterator, which allows any collection to be
traversed in the context of a simple loop structure.

FM C6840 43079 10/27/08 9:51 AM Page xxiv

Chapters 17-20 present advanced data structures and algorithms as a transi-
tion to later courses in computer science. Chapter 17 visits recursion for the sec-
ond time in the book. This pass includes an examination of advanced algorithms
for sorting, backtracking search, recursive descent parsing, and the processing of
recursive data structures such as Lisp-like lists. Chapter 18 discusses various tree
structures, including binary search trees, heaps, and expression trees. Chapter 19
examines the implementation of the unordered collections, dictionaries and sets,
using hashing strategies. Chapter 20 provides an introduction to graphs and
graph-processing algorithms.

Special Features
This book explains and develops concepts carefully, using frequent examples and
diagrams. New concepts are then applied in complete programs to show how
they aid in solving problems. The chapters place an early and consistent emphasis
on good writing habits and neat, readable documentation.

The book includes several other important features:
! Case studies—These present complete Python programs ranging from the

simple to the substantial. To emphasize the importance and usefulness of
the software development life cycle, case studies are discussed in the frame-
work of a user request, followed by analysis, design, implementation, and
suggestions for testing, with well-defined tasks performed at each stage.
Some case studies are extended in end-of-chapter programming projects.

! Chapter objectives and chapter summaries—Each chapter begins with a set
of learning objectives and ends with a summary of the major concepts cov-
ered in the chapter.

! Key terms and a glossary—When a technical term is introduced in the text,
it appears in boldface. Definitions of the key terms are also collected in a
glossary.

! Exercises—Most major sections of each chapter end with exercise ques-
tions that reinforce the reading by asking basic questions about the mate-
rial in the section. Each chapter ends with a set of review exercises.

! Programming projects—Each chapter ends with a set of programming
projects of varying difficulty.

! Software toolkits for graphics and image processing—This book comes with
two open-source Python toolkits for the easy graphics and image processing
discussed in Chapter 7. These are can be obtained from the student down-
loads page on www.course.com, or at http://home.wlu.edu/~lambertk/python/

! Appendices—Three appendices include information on obtaining Python
resources, installing the toolkits, and using the toolkits’ interfaces.

PREFACE [xxv]

FM C6840 43079 10/27/08 9:51 AM Page xxv

PREFACE[xxvi]

Supplemental Resources
The following supplemental materials are available when this book is used in a
classroom setting. All of the teaching tools available with this book are provided
to the instructor on a single CD-ROM.

Electronic Instructor’s Manual
The Instructor’s Manual that accompanies this textbook includes:

! Additional instructional material to assist in class preparation, including
suggestions for lecture topics.

! Solutions to all the end-of-chapter materials, including the Programming
Exercises.

ExamView®

This textbook is accompanied by ExamView, a powerful testing software package
that allows instructors to create and administer printed, computer (LAN-based),
and Internet exams. ExamView includes hundreds of questions that correspond to
the topics covered in this text, enabling students to generate detailed study guides
that include page references for further review. These computer-based and
Internet testing components allow students to take exams at their computers, and
save the instructor time because each exam is graded automatically.

PowerPoint Presentations
This book comes with Microsoft PowerPoint slides for each chapter. These are
included as a teaching aid either to make available to students on the network for
chapter review, or to be used during classroom presentations. Instructors can
modify slides or add their own slides to tailor their presentations.

Distance Learning
Course Technology is proud to offer online courses in WebCT and Blackboard.
For more information on how to bring distance learning to your course, contact
your local Cengage Learning sales representative.

Source Code
The source code is available at www.cengage.com/computerscience, and also is avail-
able on the Instructor Resources CD-ROM. If an input file is needed to run a
program, it is included with the source code.

FM C6840 43079 10/27/08 9:51 AM Page xxvi

Solution files
The solution files for all programming exercises are available at www.cengage.com/
computerscience and are available on the Instructor Resources CD-ROM. If an input
file is needed to run a programming exercise, it is included with the solution file.

We Appreciate Your Feedback
We have tried to produce a high-quality text, but should you encounter any
errors, please report them to lambertk@wlu.edu. A listing of errata, should they be
found, as well as other information about the book, will be posted on the Web
site http://home.wlu.edu/~lambertk/python/.

Acknowledgments
I would like to thank my contributing author, Martin Osborne, for many years of
advice, friendly criticism, and encouragement on several of my book projects.

I would like to thank my colleague, Sara Sprenkle, and our students at
Washington and Lee University for classroom testing this book over several semesters.

I would like to thank the following reviewers for the time and effort they
contributed as they completed their reviews of each chapter: Paul Albee, Central
Michigan University; Andrew Danner, Swarthmore College; Susan Fox,
Macalester College; Robert Franks, Central College; and Jim Slack, Minnesota
State University, Mankato. Also, thank you to the following reviewers who con-
tributed their thoughts on the original book proposal: Christian Blouin,
Dalhousie University; Margaret Iwobi, Binghamton University; Sam Midkiff,
Purdue University; and Ray Morehead, West Virginia University.

Also, thank you to the individuals at Course Technology who helped to assure
that the content of all data and solution files used for this text were correct and
accurate: Chris Scriver, MQA Project Leader and Serge Palladino, MQA Tester.

Finally, thanks to several other people whose work made this book possible:
Ann Shaffer, Developmental Editor, Shaffer Technical Editing, LLC; Marisa
Taylor, Senior Project Manager, GEX Inc.; Amy Jollymore, Acquisitions Editor,
Course Technology; Alyssa Pratt, Senior Product Manager, Course Technology;
and Matt Hutchinson, Content Project Manager, Course Technology.

PREFACE [xxvii]

FM C6840 43079 10/27/08 9:51 AM Page xxvii

PREFACE[xxviii]

Dedication
To my pal, Ken Van Ness
Kenneth A. Lambert

Lexington, VA

FM C6840 43079 10/27/08 9:51 AM Page xxviii

