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Welcome to Fundamentals of Python: Data Structures, 2nd Edition. This text is intended 
for a second semester course in programming and problem solving with data structures. It 
covers the material taught in a typical Computer Science 2 course (CS2) at the undergradu-
ate level. Although this book uses the Python programming language, you need only have a 
basic knowledge of programming in a high-level programming language before beginning 
Chapter 1.

What You’ll Learn
The book covers four major aspects of computing:

1. Programming basics—Data types, control structures, algorithm development, 
and program design with functions are basic ideas that you need to master to solve 
problems with computers. You’ll review these core topics in the Python program-
ming language and employ your understanding of them to solve a wide range of 
problems.

2. Object-Oriented Programming (OOP)—Object-Oriented Programming is the 
dominant programming paradigm used to develop large software systems. You’ll 
be introduced to the fundamental principles of OOP so that you can apply them 
 successfully. Unlike other textbooks, this book helps you develop a professional-
quality framework of collection classes to illustrate these principles.

3. Data structures—Most useful programs rely on data structures to solve prob-
lems. At the most concrete level, data structures include arrays and various types 
of linked structures. You’ll use these data structures to implement various types of 
collection structures, such as stacks, queues, lists, trees, bags, sets, dictionaries, and 
graphs. You’ll also learn to use complexity analysis to evaluate the space/time trade-
offs of different implementations of these collections.

4. Software development life cycle—Rather than isolate software development tech-
niques in one or two chapters, this book deals with them throughout in the context 
of numerous case studies. Among other things, you’ll learn that coding a program 
is often not the most difficult or challenging aspect of problem solving and software 
development.

Preface
xi



Why Python?
Computer technology and applications have become increasingly more sophisticated over 
the past three decades, and so has the computer science curriculum, especially at the intro-
ductory level. Today’s students learn a bit of programming and problem solving and are 
then expected to move quickly into topics like software development, complexity analysis, 
and data structures that, 30 years ago, were relegated to advanced courses. In addition, 
the ascent of object-oriented programming as the dominant paradigm has led instructors 
and textbook authors to bring powerful, industrial-strength programming languages such 
as C++ and Java into the introductory curriculum. As a result, instead of experiencing the 
rewards and excitement of solving problems with computers, beginning computer science 
students often become overwhelmed by the combined tasks of mastering advanced con-
cepts as well as the syntax of a programming language.
This book uses the Python programming language as a way of making the second course 
in computer science more manageable and attractive for students and instructors alike. 
Python has the following pedagogical benefits:
 • Python has simple, conventional syntax. Python statements are very close to those of 

pseudocode algorithms, and Python expressions use the conventional notation found 
in algebra. Thus, you can spend less time dealing with the syntax of a programming 
 language and more time learning to solve interesting problems.

 • Python has safe semantics. Any expression or statement whose meaning violates the 
definition of the language produces an error message.

 • Python scales well. It is easy for beginners to write simple programs in Python. Python 
also includes all the advanced features of a modern programming language, such as 
 support for data structures and object-oriented software development, for use when 
they become necessary, especially in the second course in computer science

 • Python is highly interactive. You can enter expressions and statements at an interpreter’s 
prompts to try out experimental code and receive immediate feedback. You can also 
compose longer code segments and save them in script files to be loaded and run as 
modules or stand-alone applications.

 • Python is general purpose. In today’s context, this means that the language includes 
resources for contemporary applications, including media computing and web 
services.

 • Python is free and is in widespread use in the industry. You can download Python to run 
on a variety of devices. There is a large Python user community, and expertise in Python 
programming has great resume value.

To summarize these benefits, Python is a comfortable and flexible vehicle for  expressing 
ideas about computation, both for beginners and for experts. If you learn these ideas well 
in the first year, you should have no problems making a quick transition to other lan-
guages needed for courses later in the curriculum. Most importantly, you will spend less 
time staring at a computer screen and more time thinking about interesting problems 
to solve.
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Organization of This Book
The approach in this book is easygoing, with each new concept introduced only when it is 
needed.
Chapter 1 provides a review of the features of Python programming that are needed to begin 
a second course in programming and problem solving in Python. The content of this chapter 
is organized so that you can skim it quickly if you have experience in Python programming, 
or you can dig a bit deeper to get up to speed in the language if you are new to Python.
Chapters 2 through 12 covers the major topics in a typical CS2 course, especially the specifica-
tion, implementation, and application of abstract data types, with the collection types as the 
primary vehicle and focus. Along the way, you will be thoroughly exposed to object-oriented 
programming techniques and the elements of good software design. Other important CS2 topics 
include recursive processing of data, search and sort algorithms, and the tools used in software 
development, such as complexity analysis and graphical notations (UML) to document designs.
Chapter 2 introduces the concept of an abstract data type (ADT) and provides an overview 
of various categories of collection ADTs.
Chapters 3 and 4 explore the data structures used to implement most collections and the 
tools for analyzing their performance trade-offs. Chapter 3 introduces complexity analysis 
with big-O notation. Enough material is presented to enable you to perform simple analyses 
of the running time and memory usage of algorithms and data structures, using search and 
sort algorithms as examples. Chapter 4 covers the details of processing arrays and linear 
linked structures, the concrete data structures used to implement most collections. You’ll 
learn the underlying models of computer memory that support arrays and linked structures 
and the time/space trade-offs that they entail.
Chapters 5 and 6 shift the focus to the principles of object-oriented design. These principles 
are used to organize a professional-quality framework of collection classes that will be cov-
ered in detail in later chapters.
Chapter 5 is concerned with the critical difference between interface and implementation. 
A single interface and several implementations of a bag collection are developed as a first 
example. Emphasis is placed on the inclusion of conventional methods in an interface, to 
allow different types of collections to collaborate in applications. For example, one such 
method creates an iterator, which allows you to traverse any collection with a simple loop. 
Other topics covered in this chapter include polymorphism and information hiding, which 
directly stem from the difference between interface and implementation.
Chapter 6 shows how class hierarchies can reduce the amount of redundant code in an object-
oriented software system. The related concepts of inheritance, dynamic binding of method 
calls, and abstract classes are introduced here and used throughout the remaining chapters.
Armed with these concepts and principles, you’ll then be ready to consider the other major 
collection ADTs, which form the subject of Chapters 7 through 12.
Chapters 7 through 9 present the linear collections, stacks, queues, and lists. Each collec-
tion is viewed first from the perspective of its users, who are aware only of an interface and 
a set of performance characteristics possessed by a chosen implementation. The use of each 
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collection is illustrated with one or more applications, and then several implementations 
are developed, and their performance trade-offs are analyzed.
Chapters 10 through 12 present advanced data structures and algorithms as a transition to 
later courses in computer science. Chapter 10 discusses various tree structures, including 
binary search trees, heaps, and expression trees. Chapter 11 examines the  implementation 
of the unordered collections, bags, sets, and dictionaries, using hashing strategies. 
 Chapter 12 introduces graphs and graph-processing algorithms.
As mentioned earlier, this book is unique in presenting a professional-quality framework of 
collection types. Instead of encountering a series of apparently unrelated collections, you 
will explore the place of each collection in an integrated whole. This approach allows you 
to see what the collection types have in common as well as what makes each one unique. 
At the same time, you will be exposed to a realistic use of inheritance and class hierarchies, 
topics in object-oriented software design that are difficult to motivate and exemplify at this 
level of the curriculum.

Special Features
This book explains and develops concepts carefully, using frequent examples and diagrams. 
New concepts are then applied in complete programs to show how they aid in solving prob-
lems. The chapters place an early and consistent emphasis on good writing habits and neat, 
readable documentation.
The book includes several other important features:
 • Case studies—These present complete Python programs ranging from the simple to the 

substantial. To emphasize the importance and usefulness of the software development life 
cycle, case studies are discussed in the framework of a user request, followed by analysis, 
design, implementation, and suggestions for testing, with well-defined tasks performed at 
each stage. Some case studies are extended in end-of-chapter programming projects.

 • Chapter summaries—Each chapter after the first one ends with a summary of the 
major concepts covered in the chapter.

 • Key terms—When a new term is introduced in the text, it appears in bold face. 
 Definitions of the key terms are also collected in a glossary.

 • Exercises—Most major sections of each chapter after the first one end with exercise 
questions that reinforce the reading by asking basic questions about the material in the 
section. After Chapter 2, each chapter ends with review questions.

 • Programming projects—Each chapter ends with a set of programming projects of 
varying difficulty.

New in This Edition
The most obvious change in this edition is the addition of full color. All program examples 
include the color coding used in Python’s IDLE, so students can easily identify program 
elements such as keywords, comments, and function, method, and class names. Learning 
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objectives have been added to the beginning of each chapter. Several new figures have been 
added to illustrate concepts, and many programming projects have been added or reworked. 
A new section on iterators and higher-order functions has been added to Chapter 2. Finally, 
a new section on Lisp-like lists, recursive list processing, and functional programming has 
been added to Chapter 9.

Instructor Resources
MindTap
MindTap activities for Fundamentals of Python: Data Structures are designed to help stu-
dents master the skills they need in today's workforce. Research shows employers need 
critical thinkers, troubleshooters, and creative problem-solvers to stay relevant in our 
fast-paced, technology-driven world. MindTap helps you achieve this with assignments 
and activities that provide hands-on practice and real-life relevance. Students are guided 
through assignments that help them master basic knowledge and understanding before 
moving on to more challenging problems.
All MindTap activities and assignments are tied to defined unit learning objectives.  Hands-on 
coding labs provide real-life application and practice. Readings and dynamic visualizations 
support the lecture, while a post-course assessment measures exactly how much a class 
stands in terms of progress, engagement, and completion rates. Use the content and learning 
path as-is, or pick and choose how our materials will wrap around yours. You control what 
the students see and when they see it. Learn more at http://www.cengage.com/mindtap/.

Instructor Companion Site
The following teaching tools are available for download at the Companion Site for this text. 
Go to instructor.cengage.com and sign in to the instructor account. Search for the textbook 
and add the text to the instructor dashboard.
 • Instructor’s Manual: The Instructor’s Manual that accompanies this textbook includes 

additional instructional material to assist in class preparation, including items such as 
 Overviews, Chapter Objectives, Teaching Tips, Quick Quizzes, Class Discussion Topics, 
Additional Projects, Additional Resources, and Key Terms. A sample syllabus is also available.

 • Test Bank: Cengage Testing Powered by Cognero is a flexible, online system that allows 
you to:
 • author, edit, and manage test bank content from multiple Cengage solutions
 • create multiple test versions in an instant
 • deliver tests from your LMS, your classroom, or wherever you want

 • PowerPoint Presentations: This text provides PowerPoint slides to accompany each 
chapter. Slides may be used to guide classroom presentations, to make available to stu-
dents for chapter review, or to print as classroom handouts. Files are provided for every 
figure in the text. Instructors may use the files to customize PowerPoint slides, illustrate 
quizzes, or create handouts.
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 • Solutions: Solutions to all programming exercises are available. If an input file is 
needed to run a programming exercise, it is included with the solution file.

 • Source Code: The source code is available at www.cengage.com. If an input file is 
needed to run a program, it is included with the source code.

The first-of-its-kind digital subscription designed specially to lower costs. Students get total 
access to everything Cengage has to offer on demand—in one place. That’s 20,000 eBooks, 
2,300 digital learning products, and dozens of study tools across 70 disciplines and over  
675 courses. Currently available in select markets. Details at www.cengage.com/unlimited

We Appreciate Your Feedback
We have tried to produce a high-quality text, but should you encounter any errors, please report 
them to lambertk@wlu.edu. A listing of errata, should they be found, as well as other informa-
tion about the book, will be posted on the website http://home.wlu.edu/~lambertk/python/.
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